一、基本原理
氧化沟具有处理效果好,便于维护管理等优点在污水处理中广为应用,氧化沟工艺也存在占地面积大、能耗高等问题。立体循环一体化氧化沟技术将传统氧化沟混合液的平面循环改为立体循环,由一隔板将氧化沟主沟分为上、下层流道,沟内液体在转刷的推动下沿上、下层流道循环流动。固液分离器设置在主沟的弯道处,利用主沟的水流产生的动力自动回流。由于立体循环一体化氧化沟独特的立体循环结构,占地面积减少了约50%,使得一次性投资成本大幅降低;在运行过程中,立体循环一体化氧化沟仅由一台电机驱动转刷,设备少、维护简便,管理费用省,固液分离器实现污泥自动回流,能耗的降低使得运行成本减少约10%以上。
二、工艺流程
工艺流程为“农村污水—化粪池—立体循环一体化氧化沟—达标排放”
三、技术优势
立体循环一体化氧化沟技术
四、适用范围
农村生活污水处理
固相有机物的厌氧降解基本可划分为液化(水解)和甲烷化(气化)两个阶段。两阶段的优势微生物相不同;其中,水解段微生物大多为兼性,对pH环境的兼容性亦较大;而甲烷化段微生物为严格厌氧,仅适应中性的pH环境。生活垃圾,是在分类收集或分选后,仍然是高度混杂性的基质,其发酵环境条件很难严格控制,在村镇社区小规模的处理设施条件下,更加难以实现严格厌氧和中性pH环境的控制。课题研发的关键技术,将水解段和甲烷化段予以分离,隔离了混杂生活垃圾对甲烷化段微生物的直接影响,可以保证甲烷化产沼过程的稳定运行,也避免了厌氧过程环境条件控制的复杂性,简化了设备设计,为技术成本与村镇社区条件的相容性提供了基础;水解段采用堆置发酵方式,也为水解后衔接好氧稳定提供了条件。
为了保证足够的有机物水解率,达到要求的有机物气化水平,采用了沼液循环水解方式,从微生物、环境条件和传递条件三方面强化水解发酵速率。
《室外排水设计规范》5.4.1规定,水泵的选择应根据设计流量和所需扬程等因素确定,且应符合下列要求:
1.水泵宜选用同一型号,台数不应少于2台,不宜大于8台。当水量变化很大时,可配置不同规格的水泵,但不宜超过两种,或采用变频调速装置,或采用叶片可调节式水泵。
2.污水泵房和合流污水泵房应设备用泵,当工作泵(注意是工作泵)台数不大于4台时,备用泵宜为1台。工作泵台数不小于5台时,备用泵宜为2台,潜水泵房备用泵为2台时,可现场备用1台,库存备用1台,雨水泵房可不设备用泵。立交道路的雨水泵房可视泵房重要性设置备用泵。
根据以上规定,可以出,影响污水、合流泵房备用泵的因素为:地区的重要性、泵房的特殊性、工作泵的型号、工作泵台数、水泵制造质量
污水泵备用相关
《室外排水设计规范》5.4.2规定,选用的水泵宜在满足设计扬程时在高效区运行,在工作扬程与工作扬程的整个工作范围内应能安全稳定运行,2台以上水泵并联运行合用一根出水管时,应根据水泵特性曲线和管路工作特性曲线验算单台水泵工况,使之符合设计要求。
生物滤池法的基本流程是由初沉池、生物滤池和二沉池三部分组成的。主要成分包括:
1、塔式生物滤池。比传统的生物滤池的负荷更高,层次更分明、堵塞可能性更小,占地面积面积小等优点。
2、有高负荷生物滤池。处理效果更好好,去除率可达90%以上,其出水可降到25mg/L以下,且出水水质非常稳定。其缺点是占地面积过大,容易堵塞,影响环境卫生。
厌氧池是指没有溶解氧,也没有硝酸盐的反应池。缺氧池是指没有溶解氧但有硝酸盐的反应池。
酸化池---水解、酸化、产乙酸,限制甲烷化,有pH值降低现象。工艺简单,易控制操作,可去除部分COD。目的提高可生化性;
厌氧池---水解、酸化、产乙酸、甲烷化同步进行。需要调节pH,不易操作控制,去除大部分COD。目的是去除COD。
缺氧池---有水解反应,在脱氮工艺中,其pH值升高。在脱氮工艺中,主要起反硝化去除硝态氮的作用,去除部分BOD。也有水解反应提高可生化性的作用。
水解酸化池内部可以不设曝气装置,控制停留时间再水解、酸化阶段,不出现厌氧产气阶段,前两个阶段的COD去除率不是很高,因为他的目的只是将大分子的变成小分子有机物,一般去除率在20%左右,产气阶段的COD去除率一般在40%左右,但这是产生的硫化氢气体要进行除臭处理,且达到产气阶段的停留时间要较前两阶段长,也就是要出现厌氧状态。缺缺氧池内要设置曝气装置,控制溶解氧在0.3-0.8mg/l,利用兼氧微生物及生物膜来降解废水中的有机物,接触氧化池内的曝气器要慎重选择,既要保证供氧量,又要确保有利于生物膜的脱落、更新。一般不选用微孔曝气器作为池底的曝气器。