医院一体化地埋式污水处理设备
生物膜法缺点:
①活性生物难以人为控制,在运行方面灵活性较差。而活性污泥法运行比较方便灵活。
②由于载体材料的比表面积小,故设备容积负荷有限,空间效率较低。需要较多的载体填料和支撑结构,通常基建投资超过活性污泥法。
③处理出水往往含有较大的脱落的生物膜片,使得出水澄清度降低。而活性污泥法在
正常情况下获得比较好的澄清水。
应用范围
活性污泥和生物膜法系统是当前污水处理领域应用广泛的两种处理技术。活性污泥法是目前应用广泛的好氧生物处理技术,保证活性污泥处理系统成功运行的基本条件是:1.废水中含有微生物所需的C、N、P等营养物质及元素;2.混合液中含有足够的溶解氧;3.活性污泥应与废水充分的接触;4.活性污泥需连续回流,并及时排放剩余污泥,使混合液保持适量的活性污泥;5.废水中含有的有毒污染物质的量足够低,对微生物不能构成抑制作用。生物膜法是一种高效的废水处理方法,具有污泥量少,不会引起污泥膨胀,对废水的水质和水量的变动具有较好的适应能力,运行管理简单等特点。他们能有效的应用于生活污水、城市污水和各种工业废水的处理中。
活性污泥法和生物膜法的区别不仅仅是微生物悬浮与附着之分,更重要的是扩散过程在生物膜处理系统中是一个必须考虑的因素。在生物膜反应器中,有机污染物、溶解氧及各种必须的营养物质要从液相扩散到生物膜表面,进而进到生物膜内部,只有扩散到生物膜表面或内部的污染物才有可能被生物膜内微生物分解与转化,终形成各种代谢产物。在生物膜反应器中,由于微生物被固定在载体上,从而实现了SRT与HRT(水力停留时间)的分离,使得增殖速率慢的微生物也能生长繁殖。
沉淀区:第2厌氧区的泥水混合物在沉淀区进行固液分离,上清液由出水管排走,沉淀的颗粒污泥返回第2厌氧区污泥床。
从IC反应器工作原理中可见,反应器通过2层三相分离器来实现SRT>HRT,获得高污泥浓度;通过大量沼气和内循环的剧烈扰动,使泥水充分接触,获得良好的传质效果。
3.2 IC工艺技术优点
IC反应器的构造及其工作原理决定了其在控制厌氧处理影响因素方面比其它反应器更具有优势。
(1)容积负荷高:IC反应器内污泥浓度高,微生物量大,且存在内循环,传质效果好,进水有机负荷可超过普通厌氧反应器的3倍以上。
(2)节省投资和占地面积:IC反应器容积负荷率高出普通UASB反应器3倍左右,其体积相当于普通反应器的1/4~1/3左右,大大降低了反应器的基建投资。IC反应器高径比很大(一般为4~8),占地面积特别省,非常适合用地紧张的工矿企业。
(3)抗冲击负荷能力强:处理低浓度废水(COD=2000~3000mg/L)时,反应器内循环**可达进水量的2~3倍;处理高浓度废水(COD=10000~15000mg/L)时,内循环**可达进水量的10~20倍[5]。大量的循环水和进水充分混合,使原水中的有害物质得到充分稀释,大大降低了毒物对厌氧消化过程的影响。
(4)抗低温能力强:温度对厌氧消化的影响主要是对消化速率的影响。IC反应器由于含有大量的微生物,温度对厌氧消化的影响变得不再显著和严重。通常IC反应器厌氧消化可在常温条件(20~25℃)下进行,这样减少了消化保温的困难,节省了能量。
IC处理技术应用现状及发展前景
IC处理技术从问世以来已成功应用于土豆加工、菊苣加工、啤酒、柠檬酸和造纸等废水处理中。1985年荷兰首次应用IC反应器处理土豆加工废水,容积负荷(以COD计)高达35~50kg/(m3·d),停留时间4~6h;而处理同类废水的UASB反应器容积负荷仅有10~15kg/(m3·d),停留时间长达十几到几十个小时。
在啤酒废水处理工艺中,IC技术应用得较多,目前我国已有3家啤酒厂引进了此工艺。从运行结果看,IC工艺容积负荷(以COD计)可达15~30kg/(m3·d),停留时间2~4.2h,COD去除率ηCOD>75%[9];而UASB反应器容积负荷仅有4~7kg/(m3·d),停留时间近10 h。
对于处理高浓度和高盐度的有机废水,IC反应器也有成功的经验。位于荷兰Roosendaal的一家菊苣加工厂的废水,COD约7900mg/L,SO42-为250mg/L,Cl-为4200mg/L。采用22m高、1100m3容积的IC反应器,容积负荷(以COD计)达31kg/(m3·d),ηCOD>80%,平均停留时间仅6.1h。
膜生物反应技术应用优点:其一,膜生物反应技术本身分离效率相对较高。由于膜生物反应器本身不需要过滤单元以及沉淀池,所占用的范围相对较小,并且没有污染沉降性这一实质问题。这一系统中由于MISS存在的浓度相对较高,系统的容积负荷显著升高,该系统的抗复合能力相对较强,促使膜生物反应技术能够有效的将有机废水合理处理。
其二,膜生物反应技术活性污泥浓度较高。该技术能够将生物的反应能力逐渐**,将反应池中的MISS浓度迅速增加,有效的将高浓度有机废水进行处理,**整体水质,降低其中存在的悬浮物,将污泥地的体积减小,**整体降解率。
其三,膜生物反应技术有效实现微生物与废水分离。在膜生物反应器中,能够直接将废水以及活性污泥有效分离,促使废水在膜腔之内自由移动,进而将水槽与进水槽之间相互连接,一般情况下生物细菌会流动在膜外的区域,使废水同微生物之间进行有效分离,确保实现预期效果。
膜生物反应技术应用缺点:膜生物反应技术在进行实际的应用过程中,存在一定优势,并且也存在一定不足之处,例如:膜生物反应技术相对于传统污水处理方式,针对同等级的污染水质进行实际处理过程中,通常会吸附更多的混合颗粒物以及有害物质;而在另一个层面而言,膜生物反应技术在进行应用的过程中,其中“膜”在使用一段时间之后,通常会受到一定的污染影响,导致通水量明显降低。怎样才能将“膜”的使用期限有效延长,确保膜在受到一定的污染之后仍然能够保证正常的通水量,始终是现阶段污水处理中需要研究的话题。