医院地埋式污水处理成套设备
DAT池运转控制方式
DAT池装有一套由微孔曝气器和空气管路组成的曝气系统,设溶解氧测定仪和污泥浓度计各一台。DAT池的运转控制方式有时间控制、DO控制、时间/DO控制三种方式。
①时间控制方式是一种应急控制方式,只是在DO仪发生故障不能正常工作时才转换到时间控制方式。时间控制方式是DAT池根据预先设定的时间程序,在曝气过程和沉淀过程间自动切换,循环工作。
②DO控制方式。当切换到DO控制方式后,曝气系统将根据DAT池中的溶解氧情况自动调节曝气量来保持DAT池中正常的DO水平。DAT池中DO值的控制范围设上限、下限两个点,上限为2.5mg/L,下限为1.5mg/L,当DO值高于上限值时,PLC将自动调节空气管路中的空气流量调节阀来减少对DAT池的曝气量,则控制调节阀加大对DAT池的曝气量。
上述调控必须在溶氧仪测定值保持5min(此时间可调)后,调节阀才开始动作。如果DO值在调节阀动作后的一定时间内(可调)仍未达到正常范围,则PLC发出报警信号。
③时间/DO控制方式。当选择时间/DO控制方式后,DAT池的曝气将根据时间和DO两种方式进行工作,即在设定的曝气时段内,曝气系统将按DO控制方式工作,而在设定的沉淀时段内,曝气系统将转为时间控制方式。
好氧处理法:
利用好氧菌进行发酵的过程,称之为好氧发酵。好氧处理规模小时,可只做终稀释后曝气、沉淀;中等以上规模,经过前处理和二次稀释后,可按标准活性污泥法进行处理。二次处理就是厌氧处理。好氧发酵的速度较厌氧发酵快得多,但它需要大容量的消化槽。在厕所污水处理过程中需要大量氧气,要消耗大量的能量。
生物膜的表面是高度活性的、具有巨大的截留和吸附能力,可吸附混合液中的颗粒、胶体物质和溶解性物质,生物膜中除异氧菌、自养硝化菌和原生动物外还有使细胞得以凝聚在一起的胞外多聚糖类物质,附着在生物膜絮体表面的溶解态、悬浮态、胶体态的有机物,微生物的代谢残留物及进水中不可降解的组份等。许多低分子溶解性有机物可被微生物细胞通过主动运输、辅助运输、单纯扩散机制直接吸收,溶解性大分子有机物、悬浮物和胶体物质难以直接穿过细胞壁进入细胞内,但可以吸附在细胞表面经胞外酶的水解作用转化为可传递到胞内的溶解性有机物,生物膜的吸附作用对有机物的去除是非常重要的。
3.2 储存代谢机理
由上可见并非所有被吸附到生物膜上的有机物都可转化为细胞的原生质,而其中的一部分是以“储存物质”的形式存在。储存物质就是储存于生物膜中的溶解或非溶解性有机物并可经生物代谢作用成为微生物生长所利用的物质。
含碳有机物可作为糖原[2]、PHB[1]或其他储存化合物储存于细胞内部,作为细胞生长的碳源和能源,这些易降解的胞内储存物对于本研究是尤为重要的,因为在缺氧条件下它们将被用于反硝化;而更多的有机物则存在于细胞外即生物膜中,在胞外反应足够慢的情况下,只有在胞内储存的易降解有机物消耗到一定程度后胞外有机物才成为反硝化的碳源。
厌氧消化技术主要用于处理有机废物,如高浓度有机废水、农业废弃物、餐厨垃圾、剩余污泥等;反应产生的生物能源为缓解全球气候变化和保证能源的可持续性提供了新的选择。相比好氧生物处理,厌氧消化具有高有机负荷、剩余污泥量小、绿色能源回收以及较低的运行和维护费用等优势,得到广泛应用并迅速发展。一些环境因素如pH、温度、有机负荷和氨氮浓度(自由氨+铵离子)等影响着厌氧消化过程的稳定进行。其中,氨的毒性抑制被认为是影响厌氧消化过程的主要因素,自由氨(FAN)起主要抑制作用。研究表明氨产生抑制效果的质量浓度范围是1700~7000mg/L。这一浓度范围受到底物性质、产甲烷菌种、环境因素(温度、pH)以及驯化时期等条件的影响。随着厌氧消化反应器内蛋白质、尿素的分解,氨在消化液中不断累积,逐渐形成的高浓度氨氮将严重影响产甲烷菌的活性,从而降低反应器产气效率,甚至终导致反应失败。